Понятия со словосочетанием «мировая линия»
Мирова́я ли́ния в теории относительности — кривая в пространстве-времени, описывающая движение тела (рассматриваемого как материальная точка), геометрическое место всех событий существования тела. Иногда мировой линией называют вообще любую непрерывную линию в пространстве-времени.
Связанные понятия
Четырёхсила, 4-сила — 4-вектор силы, релятивистское обобщение трёхмерного вектора силы классической механики на четырёхмерное пространство-время.
Теорема о топологической цензуре в общей теории относительности утверждает, что в отсутствие экзотической материи нетривиальная топология пространства-времени не может быть обнаружена внешним наблюдателем, так как любые такие области коллапсируют настолько быстро, что свет не успевает их пересечь. Более точная формулировка утверждает, что в глобально гиперболическом и асимптотически плоском пространстве-времени, где выполняются световые энергетические условия, любая причинная кривая от светоподобной...
Подробнее: Топологическая цензура
Собы́тие (мирова́я то́чка) в теории относительности — моментальное локальное явление, происходящее в уникальном времени и месте, то есть точка в пространстве-времени. События являются элементами плоского пространства Минковского СТО и искривленного псевдориманова пространства-времени ОТО.
Координа́тная сингуля́рность — такая сингулярность решения уравнений Эйнштейна (либо других основных уравнений метрической теории гравитации) вкупе с координатными условиями, которую можно устранить преобразованием координат. Отличается тем, что при стремлении к такой сингулярности инварианты кривизны не расходятся.
Кривая Рибокура — плоская кривая, определяемая как геометрическое место точек, постоянного отношения радиуса кривизны к длине отрезка нормали от пересечения с кривой до пересечения с осью абсцисс.
Гиперциклы через заданную точку, имеющие одну и ту же касательную в этой точке, сходятся к орициклу по мере стремления расстояния к бесконечности.
В данной статье рассматриваются две параллельные прямые на плоскости Для параллельных прямых , расположенных не в одной плоскости, смотрите Скрещивающиеся прямые#расстояние.Расстояние между двумя прямыми линиями на плоскости - это наименьшее расстояние между любыми двумя точками, лежащими на линии. Или между точкой лежащей на прямой с другой параллельной прямой. В случае пересекающихся линий, расстояние между ними равно нулю, потому что минимальное расстояние между ними равно нулю (в точке пересечения...
Подробнее: Расстояние между прямыми
Касательный вектор — элемент касательного пространства, например элемент касательной прямой к кривой, касательной плоскости к поверхности так далее.
Неинерциа́льная систе́ма отсчёта — система отсчёта, движущаяся с ускорением или поворачивающаяся относительно инерциальной. Второй закон Ньютона также не выполняется в неинерциальных системах отсчёта. Для того чтобы уравнение движения материальной точки в неинерциальной системе отсчёта по форме совпадало с уравнением второго закона Ньютона, дополнительно к «обычным» силам, действующим в инерциальных системах, вводят силы инерции.
В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени.
Подробнее: Особая точка (дифференциальные уравнения)
Эволю́та плоской кривой — геометрическое место точек, являющихся центрами кривизны кривой.
Координа́ты Леме́тра — координаты в пространстве-времени Шварцшильда, впервые полученные Жоржем Леметром в 1933 году при помощи преобразования координат. В этих координатах была впервые устранена координатная сингулярность на гравитационном радиусе.
В релятивистской физике координатами Риндлера называется важная и полезная координатная система, представляющая часть плоского пространства-времени, также называемого пространством Минковского. Координаты Риндлера были введены Вольфгангом Риндлером для описания пространства-времени равномерно ускоренного наблюдателя.
Подробнее: Координаты Риндлера
Орицикл (греч. ὅρος + κύκλος — «граница + круг»), предельная линия ― линия на плоскости Лобачевского, ортогональная к некоторому семейству параллельных прямых.
Развёртывающаяся поверхность в дифференциальной геометрии ― поверхность, обладающая нулевой гауссовой кривизной. Такая поверхность при помощи изгибания может быть наложена на плоскость. Обратно, развёртывающаяся поверхность может быть получена преобразованиями плоскости (например, сгибанием, свёрткой, склеиванием). В трёхмерном пространстве развёртывающаяся поверхность является линейчатой, но в четырёхмерном случае это свойство уже не всегда выполняется.
Светово́й ко́нус (изотропный конус, нулевой конус) — гиперповерхность в пространстве-времени (чаще всего в пространстве Минковского), ограничивающая области будущего и прошлого относительно заданного события. Образуется изотропными векторами в пространстве-времени, то есть, ненулевыми векторами нулевой длины.
Враща́тельное движе́ние — вид механического движения. При вращательном движении материальная точка описывает окружность. При вращательном движении абсолютно твёрдого тела все его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной...
Эпицикло́ида (от др.-греч. ὲπί — на, над, при и κύκλος — круг, окружность) — плоская кривая, образуемая фиксированной точкой окружности, катящейся по внешней стороне другой окружности без скольжения.
Формула Бине (механика) — дифференциальное уравнение в частных производных, позволяющее определить центральную силу, если известно уравнение траектории материальной точки, движущейся под её действием, или по заданной центральной силе определить траекторию.
Телепараллелизм — это одна из попыток Эйнштейна создать теорию, объединяющую электромагнетизм и гравитацию. Пространство-время является, как обычно псевдоримановым многообразием c сигнатурой метрики (1,3), но, в отличие от ОТО, с нулевой кривизной и ненулевым кручением. В качестве описания гравитационного поля рассматривается не псевдориманова метрика, а поле реперов.
Изотропность пространства означает, что в пространстве нет какого-то выделенного направления, относительно которого существует «особая» симметрия, все направления равноправны.
Координатное представление (квантовая механика) — это такое представление операторов квантовой механики, в котором операторы и волновая функция зависят от пространственных координат.В этом представлении оператор координаты диагонален.
Каса́тельная пряма́я — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.
Поверхность вращения — поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси — цилиндрическая, если скрещивается с осью — гиперболоид. Одна и та же поверхность может быть получена вращением самых разнообразных кривых.
Паралле́льный перено́с (иногда трансляция) ― частный случай движения, при котором все точки пространства перемещаются в одном и том же направлении на одно и то же расстояние.
Теорема Пуанкаре — Бендиксона — теорема в теории динамических систем, описывающая возможные типы предельного поведения траектории векторного поля на плоскости или на сфере. Теорема утверждает, что предельное поведение траекторий в этом случае регулярно, и не может быть хаотическим (невозможно даже наличие всюду плотных орбит).
Окружность Аполло́ния — геометрическое место точек плоскости, отношение расстояний от которых до двух заданных точек — величина постоянная, не равная единице.
Питч-угол — это угол между направлением вектора скорости заряженной частицы и направлением вектора магнитного поля.
Кольцеобразная сингулярность (англ. Ring singularity) — понятие общей теории относительности для описания гравитационной сингулярности вращающейся чёрной дыры, или чёрной дыры Керра.
Ра́зностное уравне́ние — уравнение, связывающее значение некоторой неизвестной функции в любой точке с её значением в одной или нескольких точках, отстоящих от данной на определенный интервал.
Гипоцикло́ида (от греческих слов ὑπό — под, внизу и κύκλος — круг, окружность) — плоская кривая, образуемая точкой окружности, катящейся по внутренней стороне другой окружности без скольжения.
Кинема́тика твёрдого тела (от др.-греч. κίνημα — движение) — раздел кинематики, изучающий движение абсолютно твёрдого тела, не вдаваясь в вызывающие его причины.
Параллельные прямые (от греч. παράλληλος, буквально — идущий рядом) — в планиметрии прямые, которые не пересекаются, сколько бы их ни продолжали в обе стороны.
Строфоида (от греч. στροφή — поворот) — алгебраическая кривая 3-го порядка. Строится следующим образом (см. Рис. 1)...
Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.
Релятиви́стское равноуско́ренное движе́ние (или релятивистское равномерно ускоренное движение) — такое движение объекта, при котором его собственное ускорение постоянно. Собственным ускорением называется ускорение объекта в сопутствующей (собственной) системе отсчета, то есть в инерциальной системе отсчёта, в которой текущая мгновенная скорость объекта равна нулю (при этом система отсчёта меняется от точки к точке). Примером релятивистского равноускоренного движения может быть движение тела постоянной...
Эквифокальная гиперповерхность (или гиперповерхность Дюпена) — гиперповерхность в пространственной форме, у которой значение главных кривизн и их кратности одинаковы во всех точках.
В физике, планковская частица — это гипотетическая элементарная частица, определенная как черная дыра, у которой комптоновская длина волны совпадает с радиусом Шварцшильда. Масса частицы равна (по определению) планковской массе, а комптоновская длина волны и радиус Шварцшильда равны (по определению) планковской длине.
Плоскость Лапласа — плоскость, проходящая через центр масс Солнечной системы перпендикулярно вектору момента количества движения, иначе говоря она перпендикулярна вектору суммарного орбитального момента всех планет и вращательному моменту Солнца. Названа именем первооткрывателя, французского астронома Пьера-Симона Лапласа (1749-1827), предложившего использовать её в качестве основной координатной плоскости при изучении движений тел Солнечной системы в 1789 году. В отличие от положения плоскости эклиптики...
Центростремительное ускорение — компонента ускорения точки, характеризующая быстроту изменения направления вектора скорости для траектории с кривизной (вторая компонента, тангенциальное ускорение, характеризует изменение модуля скорости). Направлено к центру кривизны траектории, чем и обусловлен термин. Термин «центростремительное ускорение» эквивалентен термину «нормальное ускорение». Ту составляющую суммы сил, которая обуславливает это ускорение, называют центростремительной силой.
Дифференциальная геометрия кривых — раздел дифференциальной геометрии, который занимается исследованием гладких пространственных и плоских кривых в евклидовом пространстве аналитическими методами.
В геометрии трисектриса Маклорена — это кубика, примечательная своим свойством трисекции, поскольку она может быть использована для трисекции угла. Её можно определить как геометрическое место точек пересечения двух прямых, каждая из которых вращаются равномерно вокруг двух различных точек (полюсов) с отношением угловых скоростей 1:3, при этом первоначально прямые совпадают с прямой, проходящей через эти полюса. Обобщение этого построения называется Секущая Маклорена. Секущая названа в честь Колина...
Пра́вильный шестнадцатияче́йник, или просто шестнадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гексадекахор (от др.-греч. ἕξ — «шесть», δέκα — «десять» и χώρος — «место, пространство»), четырёхмерный гиперокта́эдр (поскольку является аналогом трёхмерного октаэдра), четырёхмерный кокуб (поскольку двойственен четырёхмерному гиперкубу), четырёхмерный ортоплекс.
Подробнее: Шестнадцатиячейник
Геодези́ческая преце́ссия (эффект де Ситтера, прецессия де Ситтера, прецессия Фоккера) — эффект изменения направления оси вращающегося тела, движущегося в искривлённом пространстве-времени, предсказанный общей теорией относительности (ОТО). Схожая модель коррекции движения системы Земля — Луна была предложена Виллемом де Ситтером в 1916 году.
Гравитацио́нное по́ле, или по́ле тяготе́ния, — фундаментальное физическое поле, через которое осуществляется гравитационное взаимодействие между всеми материальными телами.